waSSachusetts Microsystems Cambridge Room 39-321

Insti Research Massach Tel LPROVE BLIC RELEASE
c;‘fs%etgrt:\ology c::::r 02139 wsers (631;?2?32138 HVP&%\{%?B%%Q%UUNUMWED
<
0
™~ S o _ ,
o VLS! Memo No. 88-449 T T T , T~ el
June 1988 -
o
<
|
a) DTIC
< THE RECONFIGURABLE ARITHMETIC PROCESSOR —LECTE rgen

NOV 23 1983 Bl

“D

Stuart Fiske and William J. Dally

'Abstrai::t

The Reconfigurable Arithmetic Processor (RAP) is an arithmetic processing node for a
message-passing, MIMD concurrent computer. It incorporates on one chip several
serial, 64 bit floating point arithmetic units connected by a switching network. By
sequencing the switch through different patterns, the RAP chip calculates complete
arithmetic formulas. By chaining together its arithmetic units the RAP reduces the
amount of off chip data transfer; In the examples we have simulated off chip I/O can
often be reduced to 30% or 40% of that required by a conventional arithmetic chip.
Simulations predict a peak performance of 20M Flops with 800M bit/sec off chip
bandwidth in a 2 ym CMOS process. -

88 1152 -

Author Information

Fiske and Dally: Department of Electrical Engineering and Computer Science, Artificial
intelligence Lab, MIT, Cambridge, MA 02139; Fiske: Room NE43-416, (617) 253-8473;
Dally: Room NE43-417, (617) 253-6043.

Copyright® 1988 MIT. Memos in this series are for use inside MIT and are not
considered to be published merely by virtue of appearing in this series. This copy is for
private circulation only and may not be further copied or distributed, except for
government purposes, if the paper acknowledges U. S. Government sponsorship.
References to this work should be either to the published version, if any, or in the form
“private communication.” For information about the ideas expressed herein, contact the
author directly. For information about this series, contact Microsystems Research

f

|

| Acknowledgements

This research was supported in part by the Defense Advanced Research Projects
Agency under contract nos. NOOO14-80-C-0622 and NOOO14-85-K-0214, an NSF
Presidential Young Investigators Award, and by a scholarship from the Fonds pour la
‘ Formation de Chercheurs et I'Aide a la Recherche (Fonds FCAR). .

Center, Room 39-321, MIT, Cambridge, MA 02139; (617) 253-88.

The Reconfigurable Arithmetic Processor:

Stuart Fiske and William J. Dally
Artificial Intelligence Laboratory ws
Laboratoey for Computer Science
Massachusetts lnstitute of Technology
Cambridge, Massachusetts 02139

Abastract

The Reconfigurable Asithmetic Processor (RAP) is an arithmaetic
procassing uode for & message-passing, MIMD coacurreat com-
puter, kimpmumcﬂpmﬂmh&“bitwu
point azithmetic units counected by a switching natwork. By
sequencing the switch through different patterns, the RAP chip
calculates complete asithmetic formulas. By chaining togetber
its arithmatic azite the RAP reduces the amoant of off chip data
transfer: in the examples we bave simulated off chip 1/0 can
often be reduced to0 30% or 40% of thas required by a conven-
tiosal arithmatic chip. Simulations predict a pesk performance of
20MFlope with 800Mbit/sec off chip baadwidsh in a 2um CMOS
process.

1 Introduction

L1 Summary

The problam in bailding fast arithmetic chips doas not have to
buu&dﬁbﬁﬂh‘hmwﬁuﬁﬁm
ahie 10 supply the necassary 1/0 baadwidth. For example, »
mmhﬂ“ﬂbpuﬂﬂhﬂnﬁn“uudﬁphﬁn
resning st 20MFlope requires an [/0 bandwidth of 3.8Gbit/sec
to be kept busy. This level of 1/0 is very difficuit 1o achieve
:l:.:nh(thMﬁthmmm

The Raconfigurable Arithmaetic Processor (RAP) is & CMOS, 64
bit, floating point arithmaetic chip designed to sustain high rates
of floating point operations, while requiring ocaly a fraction of
the 1/0 bandwidth of a conveatioaal arithmatic.chip. To do this
the RAP allows the direct calculation of expressions that coatain
several adds, subtracts, and multiplies. Ia effect the chip caa be
w«dumgampmﬁm-hmm‘MaM
primitive operation.

The RAP uses serial arithmetic, Serial implementations of arith-
metic are more ares efficient than parallel implementations aad
ﬂuuuntm«dAﬁMUﬁu(Am)n;Mch.
Haﬂumuﬂaldumdndbnuwinphnntu
aren officieat switching network thas can be wsed to route dats

The ressasch described ia this paper was sapporiad in part by the Defanse
Advanced Rassasch Projects Agency wader contract N00G14-90.C-0632 and
N00814-08-K0124, ia part by an NS? Prasideatial Youag L Aigator Award,
sad ia part by & echalasship foem the Fonds pour ia Formatisa de Chaschonss
o Alda & Is Recheoche (Fends FCAR).

betwess AUs. Although a single serial unit is slower than a pas-
alld implementation, the RAP makes up for this by exploitiug
the functional paralielism achieved by having several units on one
chip: instead of a single 20MFlop unit, we have eight 2.5MFlop
units runping ia parallel. In the examples we have simulated, AU
utilization ranged from 30% to 60% depending on the problem.

The RAP datapsth shown in Figure 1 cousists of a number of
four-bit serial AUs, a awitch, input registers, and output registers.
Data firss entars the switch and gets touted to the appropriate
AUs. [ntermediate resuits are fed back into the switch which is
reconfigured to allow the next stage of the computation to take
placs. When the computation is compiete the resuits are sent to
the output registers.

S

Owpnt
Sagusan{ Usite Ragetes|

Figere 1: RAP Datapath

At o higher level, the RAP hes & message passing interface. A
RAP is seat messages that define equations as a sequence of
switch coafiguratioas, which are stored in local memory. Sub-
sequeat messages use these stored configurations to evaluate the
equation. Mechanisms are included that allow the pipelining of
several RAPs 00 that the output of one RAP can be used as the
input to another.

1.2 Background

Numerically intensive computer applications such as analog cir-
cuit simulatioa, the simulation of physical phenomens such as
N-body problems.and finite element analysis, digital signal pro-
cemsing, and three dimensional graphics require large amounts
of fioating point computing power {15]. To satisfy this demand,
muywodﬁpmwm“dchphvdaﬁw:pm
casgors have bees built (7] (11] {17]. Approaches range from math
wpmmwumudnphmmtnﬂnpm
{eg the Intel 50387 and the Motarala MCS8881) to dedicated
math processors designed for specific applications. In most cases
these processors are implemented using a bit-parallel approach.
Because of this approach, implementations are axpeasive in terms

.

Aotk For J
PNTIS CRAG 4
: CTIC 71AB 0
: U2 sey ord)
J:.'.’.;_: g N
e *:“% o

I Oy : 3
v\ R

of silicoa ares aad oanly one or two floating point units caa be pat
oa a single chip.

The ares efficiency of serial arithmetic allows several floating
poiat units to be put om & single chip. Serial asithmaetic bas
bees used in many Digital Sigoal Processing applicatioas (6] (8].
The ides of exploiting functioaal parallelism usisg serial fixed
poiot arithmetic has bees used ia this ares [9]. Maay aigocithm
alternatives exist for serial asithmetic implemestasioa (1] [10] {13)
(18}

Another approach to the [/O baadwidth probiem is to use & reg:
istar fle to store operaads aad intermediate resuits [17). The
register flle sarves the same (unction as 3 switch, selecting data
to be input to each fuaction uait dwsing ouch pipelise time slot.
The registar fls performs this switching both by storiag data o
move it to a differeat time slot, aad by multiplexing maay reg-
isters into ench register file port. The serial switch in the RAP
diminates the need for storage aad simplifies the muitiplexing.
The resulting switch is smaller, both because it is serial and be-
cause it coataias o storsge. The switch is also simpler to coatral:
switch configurations are chaaged each waed time, while register
file addresses must be changed each clock cycle. The siow coatral
signals allow us to operate the switch faster thas & comparable
register fils. Throughout the rest of this paper, the bit-parsilel
AU with no means of axploiting locality is used as a baseifhe level
of comparisoa.

The RAP chip is being designed as a part of the J-Machine (3},
3 message passing concurrest computer system uader develop-
meat at MIT. This system is based oa & mesh routing astwork
that connects a collection of processiag nodes, aad wes worm-
hale routing techaiques to reduce message latescy to 2us for &
200 bit message oa & 4K aode setwork {5]. Each single-chip aode
inclades both the setwork commuaication hardwase aad » pro-

cassor. The RAP chip is cms node type that cag At into the
astwork “siots”. [t incindes the secamary coatrol mechesiems
and memsage haadling capebilities to £t lato the system. The
RAP dorrows ssveral idess that ware first devaloped in the Mes-
sage Driven Procassor (MDP) (2} which is the gasernl purpose
computiag aode for the system. [s particular the RAP axacates
messages directly, reducing message iaterpretation overhead, asd
it makes use of the same network'communication schama [4] [3).

1.3 Gutline

The remainder of this paper describes the RAP ia detail. Section
2 gives an exampie of how the RAP is used in & typical applics-
tios. Section 3 describes the messagee that are used to control
the RAP, while section 4 describes the asrchitecture. Performance
results derived from simulations are presented ia esction 5. Sec-
tioa § brisly discusess a simplified Axed-point RAP chip that
bas bean fabricated and tested. Fimally, sectioa 7 offers some
concluding remarks.

2 An example

Ia order to illustrate how the RAP wses fuactional paraileliem to
axploit the locality and coacurrency found ia mathematical equa-
tions, we coasider the calculation a 4-poiat Fast Fourier Trane-

form (FFT) [12] (14). The 4-point FFT datalow graph is shows
in Figure 2 and consists ia 12 multiplies aad 22 additions used
to calculate the reai and imaginary parts ol the 4 output resuits.
This graph would be evaluatad by a RAP as follows: First a
*method® would be stored ia the RAP memory describing each
laval of the calculation. Thea a message would be seant coatainiag
the 14 input variables necessary for the computation. Assuming
an ideal setting, the RAP would successively rua through each
level of the calculation as described by the method, exploitiag
fuactional parallelism by daiag all operatioas of a given level in
parallel. Finally it would send 3 messags containing the results
to the appropriate destinatica.

In » realistic setting, determining the successive coafiguratioas of
a method involves a acheduling problem, siace the RAP may oot
bave esough AUs to perform all possible coacurreat operations
at once. The BAP we are building has ¢ adders/subtractors asd
4 multipliers. An optimum schedule for the graph of Figure 2 is
shown ia Figure 3: the 4-poiat FFT actually requires 7 compu-
tatioa cycies. la this application a 60 of the RAPs capacity is
used for a rate of 12 MFlops.

o
W
Ty

-S>y °‘
- A!@’JAM’ \

Figure 2: 4-Poiat FFT Dataflow Graph

The I/O baadwidth required is reducad to 25% of the bandwidth
required by a conveational bit-parailel arithmetic chip. A conven-
tional arithmetic chip would require 34 x 3 = 102 word transfers,

.

whaere 34 cotrespoads to the aumber of operstioas, and J cocre-
spoads to the two words of input data aad ose word of outpat
data for each operatioa. Using a RAP, oaly 26 words must be
transferred oa and off chip. consisting of 14 input operands, 8
output reyults, and 4 words of overhead isformation. This re-
duced I/Q basdwidth makes it possible lor & commuaications
network to keep the chip busy.

14 3 u ir = » 3

[] (] 13 i » » »
h N

7
1 3 s . s . 14 cycie

Figure 3: Operasion Scheduie for the operations of the 4-poiat
FFT Datafiow Graph

3 Maessage

There are thres types of messages that the RAP procemes in
order to support the types of operations described above

1. CONFIGURE AND EXECUTE (C+E). This message canses
operaads to be loaded into the inpat registers, passed through
ons ¢ more switch coafigurations, aad thea waloaded from
the output registers. This is repeated for each set of operands
in the message. .

2. STORE METHOD (SM). This maessage is used to store
» method in local mamory so that it can_be wsed by the
C+E message. A mathod describes a saquencs of switch
configurations aecassary to parform a calculation.

3. STORE TEMPLATE (ST). This messagn is used to store a
template ia local memory. A template contains forwarding
information thas allows the caseading of several RAP chips.

Message formats are shown ia Figure 4. The C+E message

has METHOD-ID ssd TEMPLATE-ID felds that specify the

method and tempiate to be used. Mathod sad template [De are
memory addresses that poist as the first dlement of the method ar
tamplate. Moethods and templates must be sent to the RAP be-
fore the C+E commaads thas uge them. The C+E massage also
has NODE-ID and REPLY-ID flelds that specify tha uitimate

destination of the resuits. The NODE-ID is the network address
of a nos-RAP node, and the REPLY.ID is a message header.’
These two fisids are used in conjunction with template infor-
mation to forward output resuits. The informatioa contained
in methods and templates is discussed in detail in the following
sections.

[c.cusno mq#n‘ngnu;u;"m !omulu :’mJ
[o2 | contims ko compinume | Smcanm | 0 |

s

FrngaﬂlmwnTe-s v xaTaco mx;oun? o J

Figure 4: Message Formats

3.1 Moethods

A method conxists of all the information necsssary to put operands
through a sequencs of switch coafigurations. It includes:

1. Which input registers to load with the operands.
2. Which output registars will coatain tbe resuits.

3. The anmber of switch configurations that the operands are
ta g0 through.

4 A description of each of the coafigurations. A coafiguration
containg bits describiag the switch coanectivity, and bita
that detesmine the fanctiomality of the AUs (e.g. » bit
might deserming whether an AU does 3a add or a subteact).

The fizet thres pisces of information are packed into one word (64
bits) of the method descriptioa. Each coafiguration also takes one
word, The sumber of sets of operands that will be psssed through
using & givea mathod is not included is the method description
sinee it can deduced from the end of message signal.

3.2 Templates

A tamplate is used to permit the cascading of seversi RAP chips.
It comtains information that allows the forwarding of the output
data, ia the form of 3 C+E message, to another RAP for further
computation. A tampiate consists of the address of the next RAP
that the resuits are to be seut to, and the instruction (method
aand template) that is to be axecuted there.

Cascading of RAPs warks as follows: A general purposs node
such as & MDP (2] sets up the pipeliae by loading methods aad
templates iato the appropriate RAP chips. A C+E message is
thes sent to the firs¢ RAP iz the pipeline to begin the calculation.
Each RAP ia the pipeiine 2ses its templats to forward its results
to the mext RAP for the next stage of the computation. The
NODE-ID and REPLY.ID are passed from RAP to RAP until
they are wsed at the last stage to get the resuits to their final

A

destination. In some cases it is necessary to combine resuits
coming from different RAPs bafore contiouing the computation:
this combining can be doas by an MDP.

Tempiaces are specified separately from the method to allow dif-
ferent calculations to use common subroutises and to permit a
siggle calculatios to distribute its work over several RAPs. Aa
example of two caleulations using a common subroutise would
be a routiae that multiplies all the clements of two vectors. De-
pending os which template is used to forward the resuit, such a
roatine could be used by itself or could be used ia a dot product
routine where the aext step is o add all the products together. A
RAP could also use the differeat templates to divide up a prob-
lama 30 that the next stage of the calcuistion is being exacuted
aa & sumber of different RAPs. Ia this case several RAPs would
contaia the same method aad the choice of templates would dis-
tribute the work over these procassors.

4 Architecture
4.1 Block Diagram

Figure 5 shows a block diagram of the complete RAP cogaisting
of the control blocks, the memories, aad the datapath. There are
thres coatral blocks referred to as input coatrol, cutput coatrol,
and switch coatrol, that coordinate the exscution of messages.
Input coatrol handles the receptioa of messages, the input to the
datapath, and memory operations. Output coutrol is respoasi-
ble for unicading resuit messages iato the output quene, while

_—
| :
} ;
s | U
d_! N 'hi
Comms : *_ 1
[—— — ——— ,
cemt——— € cumae .
. — T H
- el N e A AND CE) TS e =, !
ey, i ettt | s : ,

-
.

switch coatrol is respoasible foc loadiag switch configurations at

the carrect time. By dividiag tke control iato these thrve differ- -

ext blocks the operatioas of loading operands, unloading results,
and chaaging the switch coafiguration can be pipelined. Hard.
ware interiocks resolve memory coatention and provide feedback
to prevent the output queus from overflowing.

There are three memories on the chip: a main memory for hoiding
templates and methods. an input queue, and an output queus
Theiaput and cutput quenes are 64 word memories with separs
ports for the network and processor. The main memory (250
words) is shared betwesa the input coatrol and the switch coacrol,
with prioeity givea to the switch controi.

The dasapath comsists of 18 input registers, a switch, a switch
coafiguration register, a collectios of 16 function units, 16 out-
put registers, aad some buffer storage for the tempiate. The 16
fuaction waits comsist of 4 plus/migus arithmetic ugits (AUs),
4 multiply AUs, aad 8 fesdthroughs used to pass operands un-
chaaged with the appropriate delay.

Operaads are loaded into the input registers from the input
quese, propagate through the function uaits for one or more
“compuatation cycles” (whick is defined to be the time for one
pass through the switch and functicaal uaits) with the outputs of
the AUs and fesdthroughs feeding back into the switch, and then
are unloaded from the output registers into the output queue.
The input and outpst registers perform parailel-serial and serial-
parallel cosversion respectively, and can be loaded or unicaded
as the switch and AUs are busy computing another problem in-
stance. After each computasion cycle the switch is recoafigured
by the switch costrol unit which reloads the switch coafiguration
register. The appropriate templats is ualoaded into the cutput
quans bafore the output resslts.

4.3 Arithmetic Units

The RAP lncludes adder/subtractors, aad muitipliers. We esti-
mate that thess uaits will rea at 80 Mhs i & 2um CMOS process.
Fos simplicity reasoms, & ace-standard floating point formas was
chosen, consistiag of aa 8 bit, two’s complement exponent field,
and a 56 bit, two’s complement maatissa flaid. This format per.
mits o waiform treatment of the exposent and mantissa in tw
complement form. The implementation is four-bit sarial in of
to make full use of the clock period. In single bit implementa
tioas signals propagate in times much smaller than the smallest
clock period that cas be reliably distributad, and thus do not
make full use of the clock period. Manipulating two ot four bits
a¢ a time also allowy cartaia efficient serial algorithms to be used
{1} [10]. Area is appraximated to be AMA? for an AU and 500KA?
for & feadthrough.

The AUs run four times {aster than the memory. Wae dencte a
memory cycie as & major cycie and an AU cycle as a minor cycle.
A word time is defined as the time required to shift a complete
operaad into an AU, and cocresponds to 16 minor cycles or 4
major cycles. The units have a latescy of two word times in which

the exponent and magtisss oW tumpated, iad doralisation -

performed.

~&
43 Switch

The switch is shows ia Figure 6. Each AU selects one of 8 inputs
for aach of their two operaads, while the fesdthroughs each have
the choice of 2 inputs. Oa the Arst coafiguration of aay gives
maethod the inputs are takes from the 16 iaput registers, whils ca
subeequent ioss the iaputs are takes from the outpats
of the AUs asd fesdthroughs. The columa of 2X1 multiplaxers
is used to make this chaice.
The switch chosen doss not offer the complete connectivity of
a 16X18 crossbar but has the advaatage of being mech smaller
and requiriag less state injormation: each coufiguration can be
deseribed by using 90 bits (3 bits for ench AU input, 1 bit for each
_ _feedthrough, aad 1 bit for each adder/subtractor unit to salect its
functiGa) which fits into a single 64 bit word. This allows a change
of the switch coafiguration ia & siagle clock cycls by reading o
single word from memory. For the problems we simulated, the
incomplets commectivity did ot preveat us from mapping the
problems efficieatly oato the switch. The mais reason for this
was that dusing any givea stage of the calculation ot all the
AUs are neaded, 50 that it is easy to routs outputs to the desired
inputs by choosiag betwean several possibie free AUs.

Az expression compiler is nesded to map a given equation or
of equatioss iato s series of appropriate switch coafigurations. A
compiler is currently uader development based os a critical path
asalysis of the expression aad a gresdy scheduling of operations.

S Performance Evaluation

A simulator for the RAP architecture has besn written and used
to verify coatral aad to evaluate perfor This simul al-
lows the sendiag of messages to the RAP, as wall as the cascading
of RAPs. Performance figures assume » minor cycle of 12.50s, &
s jor cycie of 50ns, an iapat bandwidth of 400Mbit/sec, and an
oatput bandwidth of 400Mbit/sec [S].

A number of formulas have besn mapped into the RAP and some
of thess results are shown ia Table 1. For each problem ia this
table we list the total aumber of floating point operatios per-
formed, the anmber of iapat operands and oatput operands, and
the sumber of switch coafigerations ia the method used to de-
fine the calculation. From thess figures we calculate the average
floating poiat rate achieved and the I/Q bandwidth required to
keop a RAP busy with the problem. The lateacy columa refers
to the time from when oae problem instance is in the input buffer
to whea the complets result is in the output buffer and includes
all control overhead.

Avarags fioating point performance achisved depends on how well
a problem is able to use the paniildism made available by the
RAP. The average floating point performance for these problems
was 9MFlope or 43% of the peak performance possidble. Opti-
mizsation is possible in soms of these cases by combising several
peoblem., ia order to wee more of the resources: for instance doing
twy 2X2 FFTs at the same time uses the RAP more efficiencly
thea a siagis 2X2FFT. The [/O bandwidth required depends on
the locality inhereat in the probiem. For instancs the vectoe sum

= : . - oc- example has 30 locaiity that cas be exploited by the RAP and
: there is 80 bandwidth advaatage in usisg it (in fact if overhead
- g SR PRI, - T is included, nsing the RAP is mare costly). The baadwidth re-
P ™ quiced for the other probisms however have all bess reduced to
'-—'E s - withia the capecity of our setwork. The /O baadwidth required
) m L—'-n—@ﬂ will incrense slightly becanse of commusication and messags has-
] . dliag overhead. The percentags cost of this overbesd depends on
[m = ,_a.m:::__}m how maay sete of operands are seat in s slagle message.
hasddl 1 = e a— T e
—owrE e 00 r—an I [] Tatepey | 1/0
) = _@ Pobien {0y | (gt ¢ | Conbyn | Pt Baadwicts
-) N S " Y 3 _E Y - E] WW%
=™ e — :. L. s m mmﬁ T W T 3 7m= b ™Y m‘\h
—W:_;_ . own [Via o PelS | ET) iE | e |
— {1
': - . _ﬁ— T+ 4) Tiles | Lis it/s
-"—E:“‘w ol Bl Tl T Bl el il
L S e — v o RN BERARE R RE TR
] e - S|}
—
L s] = ECR VI, " Table 1: RAP performance in typical applications
N S £ Y o R T — -
w 1= e oo The key featare of the RAP is that it reduces the data trans
L for bandwidth that the network must sustaia to do arithmetic

Figere 6: Switch Configuratica

calenlations efficieatly. Matching the svtwork speed to the RAP
spesd is aa importaat comsiderstion. To achieve balance, sach
method should have sufficient coafigurations to keep the RAP
busy without overloading the network, and few enough for the

”)

-

1

la_

_————-:M.‘ '
L RAS

a1
.
&
a
a
-
-

Ll LLL

Figure 7: RAP Prototype

RAP to keep up with the oetwork. Table 2 shows how many
configurations ia a method would be ideal, gives the aumber of
input operasds. Note these figures sssume aa yaloaded network:
if there is other traflic om the network the I/0 baadwidth will
decrease, the time for a complete set of operaads to arrive and
the ideal samber of configurations per method will both increass.
Any mismatch in spesd betweua the network asd the RAP caa
be somewhat compeasated for by the input and output buffers,
but in the worst case may back up the network.

6 Prototype Hardware

" A RAP et chip (Figure 7) has besa fabcicated aad tested i -

MOSIS 3um Scalable CMOS technology by MIT studeats Stu.
art Flsks, Josef Shaoul, and Petr Spacek in order to investigate
some of the idess described above, in particular the idea of bav-
iag » reconfigerable data path. It comsists of 12, 18-bit, two-bit

serial, fixed point arithmstic units connected by statically reeon-
figurable sparse crossbar switches. The datapath is a three stage
pipeline, sach stage uses 4 AUs and is connected to the next stage
by a switch. Each AU takes three operands and is capable of do-
ing muitiplicatioa, addition, subtraction of twe of its operands
while passing the third unchanged, or of multiplying two of its
operaads and adding/subtracting the third. Two register files
store input and output oparands and perform parallel-serial and
sarial-parallel coaversion.

Although the switch setup is different thaa that of the floating
point RAP, this chip demonstrates thas the switch can be off-
ciently implemented: about 12% of the total chip area is devoted
To tha switch aed switch coatrol, and this percentage will be
much smalier in the case of the 64 bit floating poiat operations
because the AUs and registers will be much bigger.

[) Time for a set of | Best Number
Operands | operaads to arrive | Configurations
i 16008 i
2 320ns 1
3 480as 1
4 640ns 1
H 800ns 2
[} 960ns 2
7 1.12us 2
3 1.28us 3
9 Ll.4dis J
10 1.60us 4
11 1.70us 4
12 1.92us ¢
13 2.08us s
14 2.24us S
15 2.40us -
16 2.56us [

Table 2: Optimum aumber of configurations per maethod vs.
aumber of input operands

7 Conclusion

The Reconfigurable Arithmetic Processor is a & special purposs
procassor specifically designed to fit into a message pamiag con-
curreat computer system. The RAP attempts to capitalize oa
the simplicity of serial arithmatic aad the performance benefits
of functional paralialism to create s poweeful Soating point anith-
maetic siagle chip processoe. By changiag the way ia which its
serial asithmetic uaits are intercoanected, the RAP can provide
additional fezibility by allowing complete arithmetic formulas to
ke calculated all at once without intermaediate resuits going off
chip or to local memory, substantislly reducing the dats transfer
required.

The concepts used ia the RAP provide the means to eficiently wee
message passing to achisve high performanca aumerical comput-
iag. A 1024 node message pagsing concurreat computer system
with 128 RAPs would provide over 2GFlops of peak computing
power.

Much work remains to be accomplisbed at the implementatioa
lavel. The design of the serial floating point units in particu-
lar is critical and raises several issues reiated 20 the numerical
aspects of floating poiat including haadling averflow, uaderfiow,
rouading, and denormalised qumbers. There is also the poten-
tial of pipelining two problems through each foating poiat uait
in order to increase performance.

Aress for further ressarch inciude investigating ways of imple-
menting division ia the same framewock, as well as investigating
how to take advantage of local memory i & RAP to further re-
duce the baadwidth coastraints. [n particular, allowing coastants
to be specified as pazt of a method would reduce [/O basdwidth
in mapy cases. Giving the RAP more coutrol over sequencing
0 thas it is less dependeat ca off chip coatral may also lead to
reduced bandwidth requiremeats and increased fexibility.

References

(1] Dally W.J., “A High Performance VLSI Quateraary Seriai
Multiplier”, Proc. [(CCD-87, pp. 649-653.

(2} Dally, W. J. et.a., “Archicecture of a Message-Driven Pro-
cessor,” Proceedings of the 14'* ACM/IEEE Symposium on
Computer Architecture, Juae 1987, pp. 189-196.

(3] Dally W.J., etal., “Concurrent Computer Architecture”
Proe. of Symp. on Parallel Computations and Their Impact
on Mechanics, 1987.

(4] Dally W.J., Seits C.L., * The Torus Roating Chip", J.
Distributed Systems, Vol. 1, No. 3, 1988, pp. 187-196.

{8] Dally W.J., Song P., “Design of a Seif-Timed VLSI Multi-
computer Communication Controller”, Prac. ICCD-87, pp.
230-234.

6] Deayer P., Ranshaw W., VLSI Signal Procesmng: A Bit.
Serial Approach, Addison-Waesley Publishing Compaay,
1988,

{7} Gosling J.B., Zuzawski J.H.P., Edwards D.B.J., “A Chip
Set for High-Speed Low Cost Floating Point Uait®, Proc.
5th Symposium on Computer Arithmetic, IEEE Comp

Society Press, 1981, pp. 50-58.

{8] Lyoa R.F., “A Bit-Serial VLSI Architectural Methodology
for Signal Processing”, VLSI'81, ed. J.P. Gray, Academic
Prass, 1981, pp. 131-140.

{9] Lyoa R.F., “MSSP: A Bit-Serial Multiprocessor for Sig-
aal Processisg” VLS! Signsl Procsssing: A Bit-Sevial Ap-
prosch, Desyer, Ronshaw, Chaptar 12, Addisce-Wesley
Publishing Company, 1948.

{10] Lyos RF., *Two's Complement Pipeline Muitipliers”,
[EEE Trens. Comm., Vol COM-24, April 1978, pp. 418
425.

[11] McAllistee W.H., Carison J.R., “Floating-Poiat Chip Set
Speads Real-Time Computer Operation”, Hewlett- Packard
Journel, February 1984, 9p. 17-23.

(12] Oppeshaim A.V.. Schafer R.W., Digital Signal Processing,
Prentice-Hall Inc., Englewcod Cliffs, New Jersay, 1975.

{13] Owens R.M., “Compound Algorithms for Digit Qu-lize
Arithmetic®, Sth Symp. Comput. Arith., Ana Arbor, MI,
May 1981, pp. 64-71.

(14] Rabiner L.W.. Gold B.. Theory and Applications of Digs-
tal Signal Processing, Prentice-Hall Iac., Eaglewood Cliffs,
New Jarsey, 1975.

[15] Rauch K., “Math Chips: how they work”, [EEE Spectrysn,
July 1987, pp. 25-30.

{16] Trivedi K.S., Ercegovac M.D., “On-line Algorithms foc Di-
vision and Multiplication®, /EEE Trana. Comput., vol. C.
28, no. 7, pp.681-687, July 1977.

[17) Weitek Corporation, “WTL1064/1085 High Speed 64-bit
IEEE Flosting Point Multiplier/ALU™ Preliminary Data
1984.

